Genetic regulation of catecholamine synthesis, storage and secretion in the spontaneously hypertensive rat.

نویسندگان

  • M L Jirout
  • R S Friese
  • N R Mahapatra
  • M Mahata
  • L Taupenot
  • S K Mahata
  • V Kren
  • V Zídek
  • J Fischer
  • H Maatz
  • M G Ziegler
  • M Pravenec
  • N Hubner
  • T J Aitman
  • N J Schork
  • D T O'Connor
چکیده

Understanding catecholamine metabolism is crucial for elucidating the pathogenesis of hereditary hypertension. Here we integrated transcriptional and biochemical profiling with physiologic quantitative trait locus (eQTL and pQTL) mapping in adrenal glands of the HXB/BXH recombinant inbred (RI) strains, derived from the spontaneously hypertensive rat (SHR) and normotensive Brown Norway (BN.Lx). We found simultaneous down-regulation of five heritable transcripts in the catecholaminergic pathway in young (6 weeks) SHRs. We identified cis-acting eQTLs for Dbh, Pnmt (catecholamine biosynthesis) and Vamp1 (catecholamine secretion); enzymatic activities of Dbh and Pnmt paralleled transcripts, with pQTLs for activities mirroring eQTLs. We also detected trans-regulated expression of Vmat1 and Chga (both involved in catecholamine storage), with co-localization of these trans-eQTLs to the Pnmt locus. Pnmt re-sequencing revealed promoter polymorphisms that result in decreased response of the transfected SHR promoter to glucocorticoid, compared with BN.Lx. Of physiological pertinence, Dbh activity negatively correlated with systolic blood pressure in RI strains, whereas Pnmt activity was negatively correlated with heart rate. The finding of such cis- and trans-QTLs at an age before the onset of frank hypertension suggests that these heritable changes in biosynthetic enzyme expression represent primary genetic mechanisms for regulation of catecholamine action and blood pressure control in this widely studied model of hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catecholamine secretory vesicles. Augmented chromogranins and amines in secondary hypertension.

Chromogranins A and B are major soluble proteins in chromaffin granules. Their adrenomedullary content is increased in the spontaneously (genetic) hypertensive rat. Is augmented catecholamine vesicular storage of the chromogranins a specific feature of genetic hypertension? To explore this question, we measured chromogranin A immunoreactivity, using a novel, synthetic peptide radioimmunoassay, ...

متن کامل

EFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.

The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...

متن کامل

Augmented Chromogranins and Amines in Secondary Hypertension

Chromogranins A and B are major soluble proteins in chromaffin granules. Their adrenomedullary content is increased in the spontaneously (genetic) hypertensive rat. Is augmented catecholamine vesicular storage of the chromogranins a specific feature of genetic hypertension? To explore this question, we measured chromogranin A immunoreactivity, using a novel, synthetic peptide radioimmunoassay, ...

متن کامل

Changes in central catecholaminergic neurons in the spontaneously (genetic) hypertensive rat.

Catecholamines and catecholamine-synthesizing enzymes have been examined in specific brain areas during the development of spontaneously (genetic) hypertensive (SH) rats. Changes in catecholamine metabolism were localized to regions of the brain implicated in the regulation of blood pressure. Norepinephrine levels and dopamine-beta-hydroxylase (DBH) activities were decreased in specific nuclei ...

متن کامل

Kv7(KCNQ)-K+-Channels Influence Total Peripheral Resistance in Female but Not Male Rats, and Hamper Catecholamine Release in Hypertensive Rats of Both Sexes

K+-channels of the Kv7/KCNQ-family hyperpolarize and stabilize excitable cells such as autonomic neurons and vascular smooth muscle cells (VSMC). Kv7 may therefore play a role in blood pressure (BP) homeostasis, and prevent a high total peripheral vascular resistance (TPR), a hallmark of hypertensive disease. The present study analyzed if Kv7 channels influence catecholamine release and TPR in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 2010